

2641 Mathematics: Statistics 1

January 2004

Mark Scheme

1 (i)													
Year	1	2	3	4	5	6	7						
Points gained by team A 41 82 62 58 50 60 80								B1	Correct				
Points gained by team B									ranks (or reverse)				
Ranks for team A									10,0130)				
Ranks for team B	6	3	2	5	1	7	4						
d	d 1 -2 1 0 5 -3 -2												
								M1	Attempt to				
									find d (or				
$\Sigma d^2 = 1 + 4 + 1 + 0 + 25 + 9 + 4 = 44$, so									d^2) from ranked data				
								M1	ranked data				
								IVII	Correct				
Spearman's Rank correlation coefficient = $1 - 6 \times 44$									formula for				
7 imes 48									Spearman				
									used.				
= ³ / ₁₄ = 0.214285									Correct				
								A1	answer				
= 0.214 (3 s.f.)									(fraction or				
								4	decimal)				
									a.r.t. 0.214				
(ii) Spearman's rank correlation coefficient shows that there is little								Comment					
agreement in the rankings gained by the two teams over the 7 seven years.							B1	stating a					
								"low" level					
								1	of				
									agreement				

2 (i) $S_{xy} = \Sigma xy - (\Sigma x)(\Sigma y) = 47\ 520 - \frac{550 \times 803}{10}$ = 3 355 $S_{xx} = \Sigma x^2 - (\Sigma x)^2 = 38\ 500 - \frac{550^2}{10}$ = 8 250 M1 Calculato or formula
$= 3 355 S_{xx} = \Sigma x^{2} - (\Sigma x)^{2} = 38 500 - \frac{550^{2}}{10} $ M1 Calculato
$S_{xx} = \Sigma x^2 - (\Sigma x)^2 = 38\ 500 - \frac{550^2}{10}$ M1 Calculato
n 10 M1 Calculato
n 10 M1 Calculato
= 8 250 or formula
$S_{yy} = \Sigma y^2 - (\Sigma y)^2 = 65\ 848.9 - \frac{803^2}{2}$ correctly
n = 10 used or
= 1.368 equivalen
1500
$r = \frac{S_{xy}}{\sqrt{S_{xx} \times S_{yy}}} $ (may be implied)
- 2255
$= \frac{3355}{\sqrt{1368 \times 8250}}$ A1 Correct
= 0.99867 = 0.999 (3 s.f.) 2 answer, a.r.t. 0.99
L
$(11) h = \frac{1}{2333} = 0.406666$
$a = \overline{y} - b\overline{x}$ = 80.3 - (0.40666)× 55 M1 for b
= 57.9333 Using
Equation of line $y = 0.407x + 57.9$ A1 with <i>their</i>
4 $y = 0.407$.
+ 57.9,
c.a.0
(iii) When $x = 45$, M1 Substituti
$y = 0.407 \times 45 + 57.9 = 76.215$ $x = 45$ integration of the second sec
= 76.2 (3 s.f.) A1 <i>their</i> eq.
a.r.t 76.2
2

	1	
3 (i) $X \sim \text{Geo}(^{1}/_{12})$	B1	'Geometric' stated
······	B1 2	$p = \frac{1}{12}$ stated, dependent on Geometric seen first/with it
(ii) (a) $P(X = 3) = \frac{1}{12} \times (\frac{11}{12})^2$ = 0.07002314	M1	(<i>their p</i>) × (their q) ²
= 0.07 or ^{121k} / ₁₇₂₈	A1	0.07 or 0.070 or $^{121k}/_{1728}$
	2	
(ii) (b) $P(X > 5) = P(5 \text{ 'failures'}) = ({}^{11}/{}_{12})^5 = 0.647227 = 0.647 (3 \text{ s.f})$	M1	$(their q)^5$ or a wholly correct $1 - P(X \le 5)$
	A1	a.r.t. 0.647
	2	
(iii) $E(X) = \frac{1}{p} = 12$	B1 1	12, c.a.o.
(iv) It seems unlikely that the prob. of a no. 37 bus would remain constant. You would hope that the longer you waited the more likely it would be that the next bus	B1 1	A valid comment as to why the model may not be appropriate
 would be a no. 37. 4 (i) P(Mike will gain a top grade) = P(he gains it at 1st sitting or at second sitting or at third sitting) 	M1	For calculation of 3 probs, with at least one having been obtained using a product
$ = \frac{{^{70}}{_{100}} + {^{30}}{_{100}} \times {^{64}}{_{100}} + {^{30}}{_{100}} \times {^{36}}{_{100}} \times {^{58}}{_{100}} = 0.95464 $	M1	At least 2 correct terms added
= 0.955 (3 s.f.) AG	M1	All 3 correct terms added
- 0.755 (5 S.I.) AG	A1 4	0.955 c.a.o.
(ii) P(Two out of 3 students gain a top grade)	M1 M1	Use of $p^2 q$ Use of $3p^2 q$
$= {}^{3}C_{1} \times 0.95464^{2} \times (1 - 0.95464)$ = 0.124018	M1	Wholly correct method
= 0.124 (3 s.f.)	A1 4	a.r.t. 0.124, allow 0.123

	D1	720
5 (i) No. of different possible	B1	720, c.a.o
arrangements = $6! = 720$	1	
	1	
(ii) Think of AE as one block, so no. of	M1	For 5! used
arrangements = 5!.	N/1	
But the two letters would also be together	M1	Evidence of trying to deal with
if in the block there was <i>EA</i> .	N/1	EA and AE
So no. of arrangements = $5! \times 2!$	M1	Wholly correct method
= 240	A1	240 c.a.o.
- 240	AI	240 C.a.O.
	4	
(iii) BY COMBINATIONS		
P(no vowels) = $\frac{4}{_{6}C_{3}} = \frac{4}{_{20}} = \frac{1}{_{5}} = 0.2$	M1	⁶ C ₃ seen or implied
Therefore P(at least 1 vowel)	M1	Subst. correct attempt at finding
		the number of selections with at
= 1 - 0.2		least 1 vowel
	M1	Wholly correct method
= 0.8		
	A1	0.8 or $\frac{4k}{5k}$
	•••••	
OR		6
P(1 vowel) + P(2 vowels) =	M1	${}^{6}C_{3}$ seen or implied
$\frac{({}^{2}\underline{C}_{1} \times {}^{4}\underline{C}_{2}) + ({}^{2}\underline{C}_{2} \times {}^{4}\underline{C}_{1})}{6\alpha}$	N/1	2c $4c$ op $2c$ $4c$
C_3	M1	${}^{2}C_{1} \times {}^{4}C_{2} \text{ OR } {}^{2}C_{2} \times {}^{4}C_{1}$
	M1	wholly correct method $0.8 - \pi^{4k/2}$
	A1	0.8 or $^{4k}/_{5k}$
OR BY PROBABILITIES		
P(no vowels) = $1 - (\frac{4}{6} \times \frac{3}{5} \times \frac{2}{4})$	M1	Subst. Attempt at one of P(0
$r(10 \text{ vowels}) = 1 - (76 \times 75 \times 74)$		vowels) or P(1 v) or P(2 v),
OR		where 3 termed products with at
P(1 vowel) or P(2 vowels) =		least 2 correct probacts with at
1(1,0) 0 $1(2,0)$ 0 $1(2,0)$ $-$	M1	One correct prob. from P(0),
$3(^{2}/_{6} \times ^{4}/_{5} \times ^{3}/_{4}) + 3(^{2}/_{6} \times ^{4}/_{5} \times ^{1}/_{4})$		P(1), P(2)
$J(16 \land 15 \land 14) \pm J(16 \land 15 \land 74)$		× /, - ×-/
	M1	Wholly correct method
		$a = \frac{4k}{2}$
	A1	0.8 or $^{4k}/_{5k}$
	4	
	4	

2641

6	(:)						aat
0	(i)	Eno ~	Englander	Enor	MI		ect
	Length, <i>l</i> ,	Freq	Frequency	Freq	M1		
	in cm	dens	density \times				Evidence of use of freq. density \times width
		2	width		N/1		
	$0 \le l < 3$	3	33	9	M1		At least 2 of the missing freqs. correct
	$3 \le l < 6$	5	3 5	15	. 1		
	$6 \le l < 10$	4	4 4	16	A1		All the missing freqs. corr
	$10 \le l < 15$	1	5 1	5			
	$15 \le l < 25$	0.5	10 0.5	5		3	
Ĺ							
(i	i)						
1	Centre, <i>x</i>	Freq.	xf x	^{2}f			
		f	-	-			
	1.5	9	13.5 2	0.25			
	4.5	15	67.5 3	03.75			
	8	16	128 1	024			
	12.5	5	62.5 7	81.25			
	20	5	100 2	000			
	TOTAL	50	371.5 4	129.25			
Ĩ							
Ν	lean = $\Sigma(xf)/\Sigma$	$\Sigma f = {}^{371.3}$	$5/_{50} = 7.43$		M1		Use of $\Sigma x f$
		v					$\overline{\Sigma f}$
S	$\mathbf{d.} = \sqrt{[\Sigma(x^2 f)]}$	$\Sigma f - (n$	nean) ²] =		A1		7.43, c.a.o.
$=\sqrt{[^{4129.25}/_{50}-7.43^2]}=5.232599\dots$			M1		Use of $\underline{\Sigma x^2 f}$		
1						Σf - (mean) ² Wholly correct method including $$	
= 5.23 (3 s.f.)					M1		$-(\text{mean})^2$
				M1		Wholly correct method including $$	
					A1	(a.r.t. 5.23
L						6	

7 (i) Distribution of <i>J</i>		
j 0 1 2 3	M1	Evidence of use of ${}^{3}C_{r}p^{r}q^{3-r}$ in either
$P(J = j) {}^{1}/_{8} {}^{3}/_{8} {}^{3}/_{8} {}^{1}/_{8}$	M1	table At least one new correct
Distribution of D		(value, probability) pair in J's table
	A1 M1	<i>J</i> 's table wholly correct
d 0 1 2 3	IVI I	At least one new correct (value, probability) pair in <i>D</i> 's table
$\mathbf{P}(D=d) \ {}^{1}/_{27} \ {}^{6}/_{27} \ {}^{12}/_{27} \ {}^{8}/_{27}$	A1	D's table wholly correct
	5	
(ii) $P(X = 2)$	M1	Splitting into cases (3,1) OR (2,0). One
= P(J = 3, D = 1) + P(J = 2, D = 0)		of these cases is sufficient.
$= \frac{1}{8} \times \frac{6}{27} + \frac{3}{8} \times \frac{1}{27} = \frac{9}{216} =$	M1	Two correct cases (two termed
$= /_8 \times /_{27} + /_8 \times /_{27} = /_{216} =$		products) considered, from their table if necessary
	A1	Both products correct
¹ / ₂₄ AG	A1	Wholly correct method
(iii) P(At least 5 heads)	4 M1	Splitting into cases (3,2), (2,3), (3,3),
= P[(J = 2, D = 3) + (J = 3, D = 2) + (J = 3, D = 2)]		with at least 2 cases correct, based on
D = 3		their table if necessary
3, 8, 1, 12, 1, 8, 44		
$= {}^{3}/_{8} \times {}^{8}/_{27} + {}^{1}/_{8} \times {}^{12}/_{27} + {}^{1}/_{8} \times {}^{8}/_{27} = {}^{44}/_{216} =$	M1	One correct product (their product for $(3,2)$ or $(2,3)$ or $(3,3)$)
		(3,2) or $(2,3)$ or $(3,3)$
		Wholly correct method
$^{11}/_{54} = 0.203703 = 0.204 (3 \text{ s.f.})$	M1	a.r.t. 0.204 or $^{11k}/_{54k}$
	A1 4	
	4	